Biography
Dr. Karin Wang is an Assistant Professor of Bioengineering at Temple University. Her research program leverages principles from tissue engineering, biomaterials science, soft matter physics, and cell biology to engineer reductionist model systems that probe cell and matrix dynamics. The interdisciplinary approaches used in her lab are aimed at enhancing our fundamental understanding of structure-function relationships from the molecular to multicellular level, to understand how physical forces regulate cell-matrix interactions in health and disease.
Dr. Karin Wang received her BS in Applied Math and Statistics and BE/MS in Biomedical Engineering from Stony Brook University in 2010. She received her PhD in Biomedical Engineering from Cornell University in 2015, studying how the materials properties of matrix proteins drive tumor progression and was awarded NSF DGE GK-12 Teaching Fellowships. During her postdoctoral training from 2015-2018 to investigate the underlying physical drivers of collective cellular migration, she was a NIH NCI F32 Postdoctoral Fellow in the Molecular and Integrative Physiological Sciences Program in the T.H. Chan School of Public Health at Harvard University.
Labs: Research Website
Google Scholar: Publications
Research Interests
- Cell and matrix mechanobiology
Structure-function relationships
Collective migration
Extracellular matrix remodeling
Tissue engineered model systems
Courses Taught
Number |
Name |
Level |
---|---|---|
BIOE 3719 |
Introduction to Bioengineering |
Undergraduate |
BIOE 4471 |
Mechanobiology |
Undergraduate |
BIOE 5471 |
Mechanobiology |
Graduate |
BIOE 5600 |
Bioengineering Graduate Seminar |
Graduate |
BIOE 5719 |
Introduction to Bioengineering |
Graduate |
Selected Publications
Featured
-
Patten, J. & Wang, K. (2024). On the right track. Nature Physics, 20(11), pp. 1702-1703. Springer Science and Business Media LLC. doi: 10.1038/s41567-024-02647-1
-
Patten, J., Halligan, P., Bashiri, G., Kegel, M., Bonadio, J.D., & Wang, K. (2024). EDA Fibronectin Microarchitecture and YAP Translocation During Wound Closure. doi: 10.1101/2024.09.23.614581
-
Bonadio, J.D., Bashiri, G., Halligan, P., Kegel, M., Ahmed, F., & Wang, K. (2024). Delivery technologies for therapeutic targeting of fibronectin in autoimmunity and fibrosis applications. Adv Drug Deliv Rev, 209, p. 115303. Netherlands. doi: 10.1016/j.addr.2024.115303
-
Longstreth, J.H. & Wang, K. (2024). The role of fibronectin in mediating cell migration. Am J Physiol Cell Physiol, 326(4), pp. C1212-C1225. United States. doi: 10.1152/ajpcell.00633.2023
-
Bashiri, G., Padilla, M.S., Swingle, K.L., Shepherd, S.J., Mitchell, M.J., & Wang, K. (2023). Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab Chip, 23(6), pp. 1432-1466. England. doi: 10.1039/d2lc00799a
-
Patten, J. & Wang, K. (2021). Fibronectin in development and wound healing. Adv Drug Deliv Rev, 170, pp. 353-368. Netherlands. doi: 10.1016/j.addr.2020.09.005
-
Seo, B.o.R.i., Chen, X., Ling, L.u., Song, Y.H., Shimpi, A.A., Choi, S., Gonzalez, J., Sapudom, J., Wang, K., Eguiluz, R.C.A., Gourdon, D., Shenoy, V.B., & Fischbach, C. (2020). Collagen microarchitecture mechanically controls myofibroblast differentiation. Proc Natl Acad Sci U S A, 117(21), pp. 11387-11398. United States. doi: 10.1073/pnas.1919394117
-
Kim, J.H., Pegoraro, A.F., Das, A., Koehler, S.A., Ujwary, S.A., Lan, B.o., Mitchel, J.A., Atia, L., He, S., Wang, K., Bi, D., Zaman, M.H., Park, J., Butler, J.P., Lee, K.H.a., Starr, J.R., & Fredberg, J.J. (2020). Unjamming and collective migration in MCF10A breast cancer cell lines. Biochem Biophys Res Commun, 521(3), pp. 706-715. United States. doi: 10.1016/j.bbrc.2019.10.188
-
Wang, K., Wu, F., Seo, B.o.R.i., Fischbach, C., Chen, W., Hsu, L., & Gourdon, D. (2017). Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions. Matrix Biol, 60-61, pp. 86-95. Netherlands. doi: 10.1016/j.matbio.2016.08.001
-
Wang, K., Cai, L., Lan, B.o., & Fredberg, J.J. (2016). Hidden in the mist no more: physical force in cell biology. Nat Methods, 13(2), pp. 124-125. United States. doi: 10.1038/nmeth.3744
-
Wang, K., Seo, B.o.R.i., Fischbach, C., & Gourdon, D. (2016). Fibronectin Mechanobiology Regulates Tumorigenesis. Cell Mol Bioeng, 9, pp. 1-11. United States. doi: 10.1007/s12195-015-0417-4
-
Seo, B.o.R.i., Bhardwaj, P., Choi, S., Gonzalez, J., Eguiluz, R.C.A., Wang, K., Mohanan, S., Morris, P.G., Du, B., Zhou, X.i.K., Vahdat, L.T., Verma, A., Elemento, O., Hudis, C.A., Williams, R.M., Gourdon, D., Dannenberg, A.J., & Fischbach, C. (2015). Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med, 7(301), p. 301ra130. United States. doi: 10.1126/scitranslmed.3010467
-
Wang, K., Eguiluz, R.C.A., Wu, F., Seo, B.o.R.i., Fischbach, C., & Gourdon, D. (2015). Stiffening and unfolding of early deposited-fibronectin increase proangiogenic factor secretion by breast cancer-associated stromal cells. Biomaterials, 54, pp. 63-71. Netherlands. doi: 10.1016/j.biomaterials.2015.03.019
-
D'Alfonso, T.M., Wang, K., Chiu, Y., & Shin, S.J. (2013). Pathologic upgrade rates on subsequent excision when lobular carcinoma in situ is the primary diagnosis in the needle core biopsy with special attention to the radiographic target. Arch Pathol Lab Med, 137(7), pp. 927-935. United States. doi: 10.5858/arpa.2012-0297-OA
-
Hashi, C.K., Zhu, Y., Yang, G., Young, W.L., Hsiao, B.S., Wang, K., Chu, B., & Li, S. (2007). Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A, 104(29), pp. 11915-11920. United States. doi: 10.1073/pnas.0704581104
Recent
-
Xue, L., Zhao, G., Gong, N., Han, X., Shepherd, S.J., Xiong, X., Xiao, Z., Palanki, R., Xu, J., Swingle, K.L., Warzecha, C.C., El-Mayta, R., Chowdhary, V., Yoon, I., Xu, J., Cui, J., Shi, Y.i., Alameh, M., Wang, K., Wang, L., Pochan, D.J., Weissman, D., Vaughan, A.E., Wilson, J.M., & Mitchell, M.J. (2024). Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat Nanotechnol. England. doi: 10.1038/s41565-024-01747-6
-
Xue, L., Hamilton, A.G., Zhao, G., Xiao, Z., El-Mayta, R., Han, X., Gong, N., Xiong, X., Xu, J., Figueroa-Espada, C.G., Shepherd, S.J., Mukalel, A.J., Alameh, M., Cui, J., Wang, K., Vaughan, A.E., Weissman, D., & Mitchell, M.J. (2024). High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat Commun, 15(1), p. 1884. England. doi: 10.1038/s41467-024-45422-9
-
Figueroa-Espada, C.G., Guimarães, P.P.G., Riley, R.S., Xue, L., Wang, K., & Mitchell, M.J. (2023). siRNA Lipid-Polymer Nanoparticles Targeting E-Selectin and Cyclophilin A in Bone Marrow for Combination Multiple Myeloma Therapy. Cell Mol Bioeng, 16(4), pp. 383-392. United States. doi: 10.1007/s12195-023-00774-y
-
Guimarães, P.P.G., Figueroa-Espada, C.G., Riley, R.S., Gong, N., Xue, L., Sewastianik, T., Dennis, P.S., Loebel, C., Chung, A., Shepherd, S.J., Haley, R.M., Hamilton, A.G., El-Mayta, R., Wang, K., Langer, R., Anderson, D.G., Carrasco, R.D., & Mitchell, M.J. (2023). In vivo bone marrow microenvironment siRNA delivery using lipid-polymer nanoparticles for multiple myeloma therapy. Proc Natl Acad Sci U S A, 120(25), p. e2215711120. United States. doi: 10.1073/pnas.2215711120
-
Butowska, K., Han, X., Gong, N., El-Mayta, R., Haley, R.M., Xue, L., Zhong, W., Guo, W., Wang, K., & Mitchell, M.J. (2023). Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy. Acta Pharm Sin B, 13(4), pp. 1429-1437. Netherlands. doi: 10.1016/j.apsb.2022.07.011
-
Xue, L., Gong, N., Shepherd, S.J., Xiong, X., Liao, X., Han, X., Zhao, G., Song, C., Huang, X., Zhang, H., Padilla, M.S., Qin, J., Shi, Y.i., Alameh, M., Pochan, D.J., Wang, K., Long, F., Weissman, D., & Mitchell, M.J. (2022). Rational Design of Bisphosphonate Lipid-like Materials for mRNA Delivery to the Bone Microenvironment. J Am Chem Soc, 144(22), pp. 9926-9937. United States. doi: 10.1021/jacs.2c02706
-
Krohn-Grimberghe, M., Mitchell, M.J., Schloss, M.J., Khan, O.F., Courties, G., Guimaraes, P.P.G., Rohde, D., Cremer, S., Kowalski, P.S., Sun, Y., Tan, M., Webster, J., Wang, K., Iwamoto, Y., Schmidt, S.P., Wojtkiewicz, G.R., Nayar, R., Frodermann, V., Hulsmans, M., Chung, A., Hoyer, F.F., Swirski, F.K., Langer, R., Anderson, D.G., & Nahrendorf, M. (2020). Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nat Biomed Eng, 4(11), pp. 1076-1089. England. doi: 10.1038/s41551-020-00623-7